Equivalence of replica and cavity methods for computing spectra of sparse random matrices.

نویسنده

  • František Slanina
چکیده

We show by direct calculation that the replica and cavity methods are exactly equivalent for the spectrum of an Erdős-Rényi random graph. We introduce a variational formulation based on the cavity method and use it to find approximate solutions for the density of eigenvalues. We also use this variational method for calculating spectra of sparse covariance matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectra of sparse random matrices

We compute the spectral density for ensembles of of sparse symmetric random matrices using replica. Our formulation of the replica-symmetric ansatz shares the symmetries of the one suggested in a seminal paper by Rodgers and Bray (symmetry with respect to permutation of replica and rotation symmetry in the space of replica), but uses a different representation in terms of superpositions of Gaus...

متن کامل

Typical kernel size and number of sparse random matrices over Galois fields: a statistical physics approach.

Using methods of statistical physics, we study the average number and kernel size of general sparse random matrices over Galois fields GF(q) , with a given connectivity profile, in the thermodynamical limit of large matrices. We introduce a mapping of GF(q) matrices onto spin systems using the representation of the cyclic group of order q as the q th complex roots of unity. This representation ...

متن کامل

Disentangling giant component and finite cluster contributions in sparse random matrix spectra.

We describe a method for disentangling giant component and finite cluster contributions to sparse random matrix spectra, using sparse symmetric random matrices defined on Erdős-Rényi graphs as an example and test bed. Our methods apply to sparse matrices defined in terms of arbitrary graphs in the configuration model class, as long as they have finite mean degree.

متن کامل

Centric connectivity index by shell matrices

Relative centricity RC values of vertices/atoms are calculated within the Distance Detour and Cluj-Distance criteria on their corresponding Shell transforms. The vertex RC distribution in a molecular graph gives atom equivalence classes, useful in interpretation of NMR spectra. Timed by vertex valences, RC provides a new index, called Centric Connectivity CC, which can be useful in the topologi...

متن کامل

Computing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method

A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 83 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2011